ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Kentaro Masuta, Yuki Hara, Makoto Oya, Naoaki Yoshida, Kazunari Katayama
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 540-549
Research Article | doi.org/10.1080/15361055.2024.2306100
Articles are hosted by Taylor and Francis Online.
Hydrogen isotope behavior, especially permeation and retention, at the first wall is important for the safety and fuel sufficiency of fusion reactors. This study focuses on the deposition layer formed on the first wall by sputtered particles. Hydrogen permeation flux was measured under the co-deposition environment of hydrogen and tungsten, and the microstructure of the deposition layer was observed by a transmission electron microscope. Then the relationship between the observed hydrogen permeation behavior and the formation of the deposition layer was evaluated. The results showed that the deposited layers had three different microstructures and that the permeation flux decreased with its formation. However, it was concluded that the permeation behavior could be evaluated simply by the increase in the thickness of the deposited layer and that there was no clear effect of the different structures on the permeation behavior.