ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
D. Díaz Barrero, T. L. Le, S. Niemes, S. Welte, M. Schlösser, B. Bornschein, H. H. Telle
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 530-539
Research Article | doi.org/10.1080/15361055.2023.2194235
Articles are hosted by Taylor and Francis Online.
An unavoidable category of molecular species in large-scale tritium applications, such as nuclear fusion, are tritium-substituted hydrocarbons, which form by radiochemical reactions in the presence of (circulating) tritium and carbon (mainly from the steel of vessels and tubing). Tritium-substituted methane species, CQ4 (with Q = H,D,T), are often the precursor for higher-order reaction chains, and thus are of particular interest. Here we describe the controlled production of CQ4 carried out in the CAPER facility of the Tritium Laboratory Karlsruhe, exploiting catalytic reactions and species enrichment via the CAPER integral permeator. CQ4 was generated in substantial quantities (>1000 cm3 at ~850 mbar, with CQ4content of up to ~20%). The samples were analyzed using laser Raman and mass spectrometry to determine the relative isotopologue composition and to trace the generation of tritiated chain hydrocarbons.