ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
D. Díaz Barrero, T. L. Le, S. Niemes, S. Welte, M. Schlösser, B. Bornschein, H. H. Telle
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 530-539
Research Article | doi.org/10.1080/15361055.2023.2194235
Articles are hosted by Taylor and Francis Online.
An unavoidable category of molecular species in large-scale tritium applications, such as nuclear fusion, are tritium-substituted hydrocarbons, which form by radiochemical reactions in the presence of (circulating) tritium and carbon (mainly from the steel of vessels and tubing). Tritium-substituted methane species, CQ4 (with Q = H,D,T), are often the precursor for higher-order reaction chains, and thus are of particular interest. Here we describe the controlled production of CQ4 carried out in the CAPER facility of the Tritium Laboratory Karlsruhe, exploiting catalytic reactions and species enrichment via the CAPER integral permeator. CQ4 was generated in substantial quantities (>1000 cm3 at ~850 mbar, with CQ4content of up to ~20%). The samples were analyzed using laser Raman and mass spectrometry to determine the relative isotopologue composition and to trace the generation of tritiated chain hydrocarbons.