ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Nicolae Bidica, Narcisa Ghimis, Bogdan Monea
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 504-519
Research Article | doi.org/10.1080/15361055.2024.2316477
Articles are hosted by Taylor and Francis Online.
Tritium permeation through structural materials of fusion reactors is an important issue from both safety and tritium self-sufficiency points of view. Mutual influences among hydrogen isotopes are also important in assessments of tritium permeation fluxes, and although some theoretical and experimental works have been carried out so far—which have all focused on steady-state permeation—their conclusions are insufficiently clear about how one isotope affects the permeation of another. This was motivation to further investigate this problem, both theoretical and experimental in a non-steady-state approach and also in the surface-limited regime (SLR) of permeation. After initial theoretical work, a dedicated experimental installation for gas-driven permeation experiments was designed and assembled. Then, initial experimental work was completed for testing monoisotope permeation of deuterium through a very thin (0.075-mm) nickel membrane in the temperature range of 473 to 773 K and for a driving pressure of deuterium gas in the range of 10−2 to 1 Pa. This work was done in preparation for subsequent multi-isotope experiments, with the proposed goal to observe how hydrogen affects the permeation of deuterium. The main objectives of the work were to confirm experimentally the achievement of the SLR of permeation for the selected conditions of testing; to determine experimentally the kinetic coefficients of surface transport for deuterium in nickel; and to test and validate the experimental setup, procedures, and methods used and their reliability to more stringent requirements of the multi-isotope experiments. Within this paper, the experimental setup and all the operating procedures used both in calibration operations and in permeation experiments are presented in detail, as well as their results. The obtained results confirmed that permeation occurred in the SLR in the tested range of pressure for each testing temperature. The surface-rate coefficients of dissociation and recombination were both determined experimentally. The values obtained for the dissociation coefficient were in very good agreement with other similar experimental data available in the literature. For the recombination coefficient, agreement was not quite satisfactory, but comparison could be made with values calculated based only on the dissociation and solubility coefficients, as data for these coefficients for the nickel-hydrogen system (determined directly from gas-driven permeation experiments) were not found in the literature. However, these results indicated good reliability of the installation, its calibration, and operating procedures in order to proceed to experimental testing of multi-isotope permeation.