ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Nicolae Bidica, Narcisa Ghimis, Bogdan Monea
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 504-519
Research Article | doi.org/10.1080/15361055.2024.2316477
Articles are hosted by Taylor and Francis Online.
Tritium permeation through structural materials of fusion reactors is an important issue from both safety and tritium self-sufficiency points of view. Mutual influences among hydrogen isotopes are also important in assessments of tritium permeation fluxes, and although some theoretical and experimental works have been carried out so far—which have all focused on steady-state permeation—their conclusions are insufficiently clear about how one isotope affects the permeation of another. This was motivation to further investigate this problem, both theoretical and experimental in a non-steady-state approach and also in the surface-limited regime (SLR) of permeation. After initial theoretical work, a dedicated experimental installation for gas-driven permeation experiments was designed and assembled. Then, initial experimental work was completed for testing monoisotope permeation of deuterium through a very thin (0.075-mm) nickel membrane in the temperature range of 473 to 773 K and for a driving pressure of deuterium gas in the range of 10−2 to 1 Pa. This work was done in preparation for subsequent multi-isotope experiments, with the proposed goal to observe how hydrogen affects the permeation of deuterium. The main objectives of the work were to confirm experimentally the achievement of the SLR of permeation for the selected conditions of testing; to determine experimentally the kinetic coefficients of surface transport for deuterium in nickel; and to test and validate the experimental setup, procedures, and methods used and their reliability to more stringent requirements of the multi-isotope experiments. Within this paper, the experimental setup and all the operating procedures used both in calibration operations and in permeation experiments are presented in detail, as well as their results. The obtained results confirmed that permeation occurred in the SLR in the tested range of pressure for each testing temperature. The surface-rate coefficients of dissociation and recombination were both determined experimentally. The values obtained for the dissociation coefficient were in very good agreement with other similar experimental data available in the literature. For the recombination coefficient, agreement was not quite satisfactory, but comparison could be made with values calculated based only on the dissociation and solubility coefficients, as data for these coefficients for the nickel-hydrogen system (determined directly from gas-driven permeation experiments) were not found in the literature. However, these results indicated good reliability of the installation, its calibration, and operating procedures in order to proceed to experimental testing of multi-isotope permeation.