ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Thomas Stokes, Mirjana Damjanovic, Joe Berriman, Stephen Reynolds
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 479-485
Research Article | doi.org/10.1080/15361055.2023.2219826
Articles are hosted by Taylor and Francis Online.
During the operation of a fusion reactor, first wall components are exposed to the plasma and therefore tritium, resulting in generation of tritiated materials that would be classified as intermediate level waste (ILW) following their removal from the vessel. Investigations were undertaken into the thermal treatment of beryllium and tungsten representative of the materials used within the Joint European Torus (JET) fusion reactor to assess if tritium from these materials can be removed in the Material Detritiation Facility at the United Kingdom Atomic Energy Authority. This detritiation process may allow the reclassification of these materials as low level waste (LLW). When heated in the presence of oxygen, both tungsten and beryllium readily oxidize as temperature increases. The oxide layers that are formed on tungsten and beryllium surfaces are thought to act as a tritium barrier, reducing the amount of tritium that can be removed by thermal treatment. As such, the generation of oxide layers may need to be minimized for treatment of tungsten and beryllium, potentially via thermal treatment at lower temperatures. Additionally, the formation of beryllium oxide presents health and safety concerns due to its toxicity and physical form. Experiments were undertaken using tungsten and beryllium samples from previous JET campaigns. The samples were heated in a pyrolyzer, and the tritium released was captured in a series of bubblers. The remaining tritium in the material was characterized by acid dissolution to allow for detritiation factors (which are defined as the fraction of tritium inventory in the sample before and after the thermal treatment) to be calculated. Tritium was successfully removed from the samples by thermal treatment in air. Future trials will use samples with larger tritium inventory to confirm obtained results and demonstrate the feasibility of thermal treatment as a detritiation method for tungsten and beryllium on higher-activity samples. This should allow for samples representative of the JET ITER-like wall (current JET configuration) to be detritiated and could demonstrate the ability of the process to reduce the tritium inventory of JET materials and allow reclassification of components from ILW to LLW.