ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
David Hillesheimer, Alexander Marsteller, Florian Priester, Marco Röllig, Michael Sturm, Stefan Welte, Johanna Wydra, Lutz Bornschein, Tobias Falke, Tobias Weber, Nancy Tuchscherer, Thanh-Long Le, Simon Niemes
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 465-471
Research Article | doi.org/10.1080/15361055.2023.2209691
Articles are hosted by Taylor and Francis Online.
The Karlsruhe Tritium Neutrino (KATRIN) experiment measures the tritium β-spectrum close to the maximum decay energy to achieve the value of the electron-antineutrino mass with a sensitivity of 0.2 eV/c2 (90% confidence level). Since only a small fraction of the decay electrons carries nearly all the energy, a high luminous tritium source, with its supporting infrastructure facilities, is necessary.
Since the start of the tritium operation of KATRIN back in May 2018, more than 600 days of 24/7 measuring campaigns with a total tritium throughput of ≈18.1 kg and a tritium concentration >95% have been conducted. Despite several technical issues occurring during the run time, the necessary reliable supply of tritium was provided. This contribution will give an overview of the current operational conditions of the Tritium Laboratory Karlsruhe tritium facilities involved, as well as the relevant technical, analytical, and administrative procedures implemented. Furthermore, an analysis will be given for system and component malfunctions in the tritium loop as well as the associated actions for problem-solving and repair. In addition, an end-of-life investigation for the component failure will be presented.