ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Claudia Bogdan, Sebastian Brad, Horia Necula, Oleksandr Sirosh, Catalin Brill, Mihai Vijulie, Alin Lazar, Aleksandr Grafov
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 443-454
Research Article | doi.org/10.1080/15361055.2023.2259238
Articles are hosted by Taylor and Francis Online.
The following properties are needed to increase the efficiency of refrigeration, liquefaction, and cryogenic separation cycles: Heat exchangers must have high effectiveness doubled by high compactness; small temperature differences between incoming and outgoing flows must be ensured to increase efficiency; there must be a large heat transfer surface, relative to the volume of the heat exchanger, to minimize heat loss; there must be a high heat transfer rate to reduce the transfer area; there must be a small pressure drop to reduce compression costs; and there must be high reliability with minimal maintenance. All these properties are entirely fulfilled by the designed matrix heat exchangers (MHEs). This paper presents the results of the research program developed by the team of the Cryogenic Laboratory from INC-DTCI ICSI Ramnicu Valcea, which included procedural stages of the realization and preliminary results of the characterization of the MHE-type heat exchanger in a narrow range of values to achieve a proper solution for a heat exchanger to be used for cryogenic purposes, such as cooling the gas mixture at the entrance of a distillation column of hydrogen isotopes and running at low pressure (typically regimes of 0.5 to 2.0 bars) and flows. Within several experimental campaigns, different assembly and testing techniques of the matrix heat exchanger (MHE) prototype were performed to achieve numerical data for the temperature and pressure drops along the heat exchanger and to verify ANSYS Fluent numerical simulation results. The results showed that for the designed and tested MHE prototype, a temperature drop of up to almost 230 K can be obtained at the established parameters correlated with pressure losses within a few millibars (the maximum recorded pressure drop is 80 mbars), small dimensions (64 mm high), and accessible weight (up to 2000 g).