ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Alina Niculescu, Gheorghe Bulubașa, George Ana, Ciprian Bucur, Maria Crăciun, Anisia Bornea
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 416-421
Research Article | doi.org/10.1080/15361055.2023.2273043
Articles are hosted by Taylor and Francis Online.
A hydrogen generator is used in the combined electrolysis catalytic exchange process (CECE) for low-level tritiated water detritiation as a source of H2 (Q2) for the liquid-phase catalytic exchange column(s) within the process. To produce H2, the H2 generator employs an electrolytic process for H2O splitting into H2 and O2, resulting two streams: a hydrogen stream and an oxygen stream. During the detritiation of water, tritium is accumulated in the H2 generator in the form of tritiated water, and the effluent streams (hydrogen and oxygen) show in time an increased tritium concentration in the form of both tritiated water vapors and gas, which need to be recovered.
The traditional methods for recovery present a risk of explosion due to the high concentration of hydrogen in oxygen (above 3%, while the explosion limit is 1%). In order to minimize this risk, a microchannel reactor with platinated channels has been developed and tested for the oxidation of tritiated hydrogen from the O2 electrolyzer stream in view of its recovery in a scrubber column and returned as tritiated water to the process. The reactor has been coupled to an electrolyzer and tested with regard to the operating temperature. It has been found that it reaches the highest oxidation efficiency of hydrogen when operated at 200°C. The design of the equipment is presented together with the results of the tests done with the equipment integrated in the CECE process.