ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Gheorghe Bulubasa, Alina Niculescu, George Ana, Ciprian Bucur, Iuliana Ștefan, Maria Crăciun, Anisia Bornea
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 411-415
Research Article | doi.org/10.1080/15361055.2023.2271242
Articles are hosted by Taylor and Francis Online.
Tritium resulting from separation processes is being stored in metal hydrides. In time, because of radioactive decay, tritium converts into 3He, which accumulates in the storage vessel. The recovery of 3He is a topic of high interest because of its wide range of applications in health care, security, and advanced research. Currently, at ICSI Râmnicu Vâlcea, a method is under development based on gas chromatography, Pd/Ag membrane permeation, and cryogenic distillation for 3He separation and enrichment having as sources both the cover gas of nuclear reactors and tritium storage containers. This paper reports the investigation of using Pd/Ag membranes for helium separation from hydrogen isotopes by experimental determination of the operating performance of the membrane in view of process integration. Tests have been performed at different temperatures in the domain of 100°C to 350°C for different hydrogen partial pressures in the upstream side of the membrane in the domain of 150 to 300 kPa, while the downstream part was continuously purged with a preliminary vacuum pump. The results for the membrane parameters are in good agreement with previous literature reports and will be utilized for the dimensioning and establishing of operating parameters of the membrane used for intermediate separation of helium isotopes from hydrogen.