ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Tim Teichmann, Xueli Luo, Thomas Giegerich, Christian Day
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 399-410
Research Article | doi.org/10.1080/15361055.2023.2229679
Articles are hosted by Taylor and Francis Online.
The requirement for a reduction of the tritium inventory of the European demonstration fusion reactor (EU-DEMO) has led to the active research and development of a continuously working pumping process termed “KALPUREX.” This process foresees the direct recycling of a large fraction of the unburnt hydrogen isotopologues via superpermeation in metal foil pumps during the burn phase. The remaining exhaust gas mixture is pumped by continuously operating, mercury-driven linear diffusion pumps. Diffusion pumps are kinetic high vacuum pumps whose pumping principle is based on the momentum transfer from a supersonic mercury vapor jet to the pumped gas mixture. Like many high vacuum pumps, they feature species-dependent pumping speeds. In the present work, we develop a simplified hybrid model of the high vacuum pumping train in order to estimate the effective pumping speed of the integrated system. The results of this model and its implications on the further development of the vacuum system are discussed for the burn and dwell phases of EU-DEMO.