ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Carmen Varlam, Irina Vagner, Ionut Făurescu, Anisia Bornea, Denisa Făurescu, Diana Bogdan
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 391-398
Research Article | doi.org/10.1080/15361055.2023.2230413
Articles are hosted by Taylor and Francis Online.
The electrolysis process is essential in the water detritiation subsystem using the combined electrolytic catalytic exchange process. A special experimental program was designed to characterize a modified HOGEN H Series industrial electrolyzer. The tritium amount transferred to hydrogen gas, the water enrichment factor, and the number of hours necessary to attain a steady-state regime were parameters of primary interest in the experiments. To minimize the necessary time for a steady-state regime, the holdup of the water electrolyzer was chosen as the minimum value allowed for safe and constant parameter operation in all experiments. The stationary regime was attained after 120 h, with an enrichment factor near 5, and an amount of 18% to 19% of tritium transferred from tritium-enriched water to hydrogen gas. These parameters were obtained in all three experiments, and the modeling software of isotope separation by electrolysis confirmed the results.