ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Carmen Varlam, Irina Vagner, Ionut Făurescu, Anisia Bornea, Denisa Făurescu, Diana Bogdan
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 391-398
Research Article | doi.org/10.1080/15361055.2023.2230413
Articles are hosted by Taylor and Francis Online.
The electrolysis process is essential in the water detritiation subsystem using the combined electrolytic catalytic exchange process. A special experimental program was designed to characterize a modified HOGEN H Series industrial electrolyzer. The tritium amount transferred to hydrogen gas, the water enrichment factor, and the number of hours necessary to attain a steady-state regime were parameters of primary interest in the experiments. To minimize the necessary time for a steady-state regime, the holdup of the water electrolyzer was chosen as the minimum value allowed for safe and constant parameter operation in all experiments. The stationary regime was attained after 120 h, with an enrichment factor near 5, and an amount of 18% to 19% of tritium transferred from tritium-enriched water to hydrogen gas. These parameters were obtained in all three experiments, and the modeling software of isotope separation by electrolysis confirmed the results.