ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Eduardo Iraola, José M. Nougués, Lluís Batet, Josep A. Feliu, Luis Sedano
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 374-390
Research Article | doi.org/10.1080/15361055.2023.2260238
Articles are hosted by Taylor and Francis Online.
Nuclear fusion depends on tritium breeding and self-sufficiency. Tritium represents a hazard due to its radioactivity and migration properties. Because of these difficulties, ITER, the largest fusion experiment so far, relies on a conservative static procedure to monitor the tritium inventory. Future commercial fusion plants can avoid operation halts if a dynamic monitoring strategy proves itself valid. Tritium plant models have been developed for this kind of monitoring and analysis task, but sensor accuracy and reliability are an issue still to be addressed, and the path to dynamic monitoring remains unclear. The present work shows the modeling procedure of the Tokamak Exhaust Processing system in a commercial simulator, Aspen HYSYS, to reproduce the inventories, streams, process conditions, and compositions of this subsystem during operation. The model is verified in a steady-state scenario using data from the available literature. A demonstration of such a tritium plant subsystem shows meaningful value for several reasons. First, this process has not been modeled before in commercial dynamic simulators, which are typically used in the process industry. It will also allow new stakeholders to participate in future fusion-related projects. Second, it will play a key role in industry-like tritium process monitoring, in which the new model will act as a digital twin of the plant. Data-driven diagnostics can be fueled by model data, helping engineers to generate additional data that could otherwise be expensive to get directly from the plant. For these reasons, models will represent an essential part of a dynamic monitoring system, necessary for feasible fusion projects.