ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Musharaf Rabbani, Anthony Busigin, Haiqin Mao, Nisa Halsey, Dayna La Barbera
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 351-358
Research Article | doi.org/10.1080/15361055.2023.2235179
Articles are hosted by Taylor and Francis Online.
In heavy water detritiation using the combined electrolysis and catalytic exchange (CECE) process, deuterium leaving the electrolyzer is fed to the bottom of the liquid-phase catalytic exchange column (LPCE) in which tritium exchanges between the tritiated deuterium gas (moving upward in the LPCE column) and D2O liquid (moving downward in the LPCE column). Once the deuterium gas leaves the LPCE column, typically a trickle bed recombiner (TBR) is used to convert the incoming deuterium gas into the heavy water.
In this study a different approach is presented in which instead of using a TBR, an additional LPCE column is used. In the additional LPCE column, deuterium gas is scrubbed with demineralized light water. This process alternative has many advantages over using a TBR. First, the oxidation of isotopic hydrogen is highly exothermic and requires a separate water-cooling circuit to maintain the temperature within the TBR. Second, a TBR requires a relatively complex internal design to ensure proper distribution of the gas, otherwise catalyst burnup may occur. Using a LPCE column instead of a TBR eliminates these complications. This paper presents a high-level layout of the process plant in which a LPCE column is used instead of a TBR. Column modeling and results are also presented.