ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Musharaf Rabbani, Anthony Busigin, Haiqin Mao, Nisa Halsey, Dayna La Barbera
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 351-358
Research Article | doi.org/10.1080/15361055.2023.2235179
Articles are hosted by Taylor and Francis Online.
In heavy water detritiation using the combined electrolysis and catalytic exchange (CECE) process, deuterium leaving the electrolyzer is fed to the bottom of the liquid-phase catalytic exchange column (LPCE) in which tritium exchanges between the tritiated deuterium gas (moving upward in the LPCE column) and D2O liquid (moving downward in the LPCE column). Once the deuterium gas leaves the LPCE column, typically a trickle bed recombiner (TBR) is used to convert the incoming deuterium gas into the heavy water.
In this study a different approach is presented in which instead of using a TBR, an additional LPCE column is used. In the additional LPCE column, deuterium gas is scrubbed with demineralized light water. This process alternative has many advantages over using a TBR. First, the oxidation of isotopic hydrogen is highly exothermic and requires a separate water-cooling circuit to maintain the temperature within the TBR. Second, a TBR requires a relatively complex internal design to ensure proper distribution of the gas, otherwise catalyst burnup may occur. Using a LPCE column instead of a TBR eliminates these complications. This paper presents a high-level layout of the process plant in which a LPCE column is used instead of a TBR. Column modeling and results are also presented.