ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Musharaf Rabbani, Anthony Busigin, Haiqin Mao, Nisa Halsey, Dayna La Barbera
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 330-339
Research Article | doi.org/10.1080/15361055.2023.2232227
Articles are hosted by Taylor and Francis Online.
Tritium is used as a fuel in nuclear fusion, and water detritiation is an important part of the overall fusion fuel cycle. This paper compares two competing technologies for an ITER-scale water detritiation reactor, namely, the advanced water distillation (AWD) and combined electrolysis and catalytic exchange (CECE) processes. The processes are compared in terms of equipment size and footprint, energy demand, isotope separation characteristics, safety, and technology readiness level. An important technical concern discussed is management of deuterium accumulation since deuterium is enriched along with tritium and D-T separation is inherently more difficult than H-T separation. Interfacing with a downstream isotope separation system is also discussed.