ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Jaroslav Stoklasa, Jan Hrbek, Lucie Karásková Nenadálová, Bence Mészáros, Mykhaylo Paukov
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 311-320
Research Article | doi.org/10.1080/15361055.2023.2259227
Articles are hosted by Taylor and Francis Online.
This study evaluates the types of waste generated by tritium during nuclear fusion. Some methods of reprocessing and decontaminating solid waste using thermal processes are evaluated, and the advantages and disadvantages of different methods are compared. The high-temperature technology selected for this study is intended for use in the EU DEMO project in the area where waste from nuclear fusion reactions is processed. Safety and environmental concerns around the technology are evaluated. The potential for detritiation of solid wastes of various sizes are investigated. The study’s focus is on wastes comprising mostly tungsten dust grains of various sizes. The possibilities and rationale for the use of high-temperature technologies are investigated. Tests conducted focus primarily on tungsten waste in powder form in various atmospheres. Problems related to the induction heating and melting of metals and nonmetals are addressed.