ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Max Aker, Michael Sturm, Florian Priester, Simon Tirolf, Dominic Batzler, Robin Größle, Alexander Marsteller, Marco Röllig, Magnus Schlösser
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 303-310
Research Article | doi.org/10.1080/15361055.2023.2214695
Articles are hosted by Taylor and Francis Online.
The KArlsruhe TRItium Neutrino (KATRIN) collaboration aims to determine the neutrino mass with a sensitivity of 0.2 eV/c2 (90% confidence level). This will be achieved by probing the end-point region of the β-electron spectrum of gaseous tritium with an electrostatic spectrometer. A gold-coated stainless steel disk defines the reference potential for high-precision neutrino mass measurement, and it terminates the β-electron flux as the physical boundary of the tritium source. This so-called rear wall is exposed to tritium, which leads to adsorption and absorption. This in turn leads to systematic uncertainties for the neutrino mass measurements that need to be understood and mitigated. In maintenance phases, during which the gaseous tritium source was emptied (<10−5 of nominal gas density), the activity that accumulated on the rear wall during normal operation was monitored using beta-induced X-ray spectrometry (BIXS) and direct observation of emitted β electrons with a silicon detector. Dependency of the observed activity increase on the integral tritium throughput was investigated and found to converge from limited exponential growth to continuous linear growth. This paper gives an overview of the results that were obtained using several methods of in situ decontamination of the rear wall while continuously monitoring the activity. The decontamination methods included heating during continuous evacuation; flushing the system with nitrogen, deuterium, or air with residual humidity at different pressures; and illumination of the rear wall with ultraviolet (UV) light. These well-known methods led to only a small (15%) decrease in the observed activity. However, a decrease of the surface activity by three orders of magnitude in less than 1 week was achieved by combination of different methods using UV light, a heated surface, and a low (5 to 100 mbar) pressure of air inside the chamber, leading to the production of highly reactive ozone. This proved to be by far the most efficient method, drastically reducing the contribution of the rear wall surface activity to the β spectrum of the gaseous source.