ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Jérôme Bucalossi, Tore Supra Team
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 184-191
Technical Paper | Stellarators | doi.org/10.13182/FST04-A554
Articles are hosted by Taylor and Francis Online.
During winter 2001-2002, the Tore Supra tokamak went through a major upgrade to provide a heat extraction capability of 25 MW in steady state (composants internes et limiteur project). In the new configuration, the operational domain has experienced a rapid extension. Indeed, discharges of more than 4 min have been performed with a world-record-breaking discharge accounting for 0.75 GJ of injected/extracted energy. Stationary discharges with fully noninductively driven current are performed routinely (typical parameters: plasma current, 0.52 MA; toroidal magnetic field, 4 T; lower hybrid power, ~3 MW, electron line density, 2.5 × 1019 m-2), limited in duration by the original lower hybrid current drive (LHCD) system. Ion cyclotron waves [ion cyclotron resonance heating (ICRH)] have been coupled to plasma for 1 min in combination with LHCD in a higher-density scenario (Greenwald fraction of 0.8, 0.11 GJ of injected ICRH power for 0.42 GJ total injected power) and with a substantial fraction of bootstrap current (15 to 20%). Electron cyclotron current drive experiments are also carried out: A new world record of electron cyclotron injected energy has been established in a single electron cyclotron resonance heating pulse of 32 s (25 MJ). In these discharges, stable central electron temperature oscillations sometimes appear, probably due to the interplay between heat transport and current drive. Density profile peaking is observed despite the absence of toroidal electric field, suggesting the existence of a turbulent inward pinch. Finally, particle balance analyses indicate that the in-vessel deuterium inventory never reaches saturation. Many carbon deposits and flakes have been found in the inner vessel, possibly playing a role in the fuel retention.