ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Rajiv Sharma, Alkesh M. Mavani, V. L. Tanna
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 230-243
Research Article | doi.org/10.1080/15361055.2023.2223742
Articles are hosted by Taylor and Francis Online.
An epoxy resin system is used in a superconducting tokamak to insulate the conducting components, such as superconducting windings, cooling pipes, metal electrodes, and bonding and sealing of dissimilar material joints at cryogenic temperature. The main aim is to develop and fabricate the dissimilar material joints of metal and glass fiber reinforced plastic (GFRP) polymer in the form of cryogenic components for the superconducting fusion magnet. To bond and fabricate the dissimilar joints, the epoxy resin needs to have low viscosity, good adhesion, resistance to moisture, long usable life, and high toughness at low temperatures.
A two-component-modified diglycidyl ether of bisphenol-A (DGEBA) epoxy resin was formulated with a modified polyamine-based hardener. To increase the toughness and minimize the induced thermal stress at low temperatures, a silane coupling agent, gamma-aminopropyltrithoxysilane, was used for its superior bonding and fast curing process. The tensile strength examination test results were found to 85 MPa, as per the International Organization for Standardization standard ISO 527-2, and an interlaminar shear strength of 12 MPa was found, as per the American Society for Testing and Materials standard ASTM D5868 at 77 K, respectively.
The mechanical performance enhancements at 77 K overcome the issue of cracks and helium leaks that develop at cryogenic temperatures, as reported. The dissimilar material joints fabricated using the epoxy resin in the form of a cryo component have been validated in machine with an acceptable helium leak tightness of 1.0E-08 mbar-l/s. In this work, we report on the development, mechanical, thermal, and electrical performance tests, the testing and failures of various epoxy resins systems used, and the cryo components at 300 and 77 K.