ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Gopi Krishna C, M. J. Quamar, N. Kishore Babu, Sarath Kumar G V, Bharath Bandi, M. K. Talari
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 215-229
Research Article | doi.org/10.1080/15361055.2023.2219830
Articles are hosted by Taylor and Francis Online.
This study investigates the microstructure and mechanical properties of DP780 steel that has been tungsten inert gas welded and post weld heat treated. Microscopy studies revealed that the weldment’s microstructure varied from martensite in the fusion zone to a mixture of martensite and ferrite in the heat affected zone (HAZ). This heterogeneity in the microstructure resulted in the formation of hardened and softened zones in the cross section of the weldment. The DP780 as-welded joint exhibited lower strength and ductility [yield strength (YS): 492 ± 5 MPa, ultimate tensile strength (UTS): 668 ± 8 MPa, and percent elongation (%El): 8 ± 1] compared to the base metal (BM) (YS: 538 ± 2 MPa, UTS: 794 ± 5 MPa, and %El: 27 ± 2) due to strain localization in the subcritical HAZ. The weldments subjected to post weld heat treatment (PWHT) at 500°C exhibited lower strength and higher ductility (YS: 471 ± 3 MPa, UTS: 624 ± 5 MPa, and %El: 13 ± 1) than the weldments subjected to PWHT at other conditions: 300°C (YS: 501 ± 7MPa, UTS: 658 ± 6 MPa, and %El: 9 ± 1) and 400°C (YS: 492 ± 3 MPa, UTS: 649 ± 5 MPa, and %El: 11 ± 1). The decrease in strength and ductility after PWHT can be attributed to the tempering of martensite present in the weldment. Erichsen cupping tests indicated a reduction in the formability of the as-welded joint due to the presence of a softened zone. While a significant increase in formability is observed in the weldments subjected to PWHT with an increase in temperature, the formability is still inferior to that of the BM due to the inhomogeneity in the microstructures across the weldment.