ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Weidong Ding, Hongguang Yang, Qin Zhan
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 205-214
Research Article | doi.org/10.1080/15361055.2023.2216533
Articles are hosted by Taylor and Francis Online.
The ZrCo-based alloy is considered one of the most promising materials for hydrogen isotope storage in the conceptual design of a fusion reactor. However, there are few systematic studies on the thermodynamic and kinetic models of hydrogen absorption in the new Zr0.8Ti0.2Co alloy. The aim of this study is to computationally derive the general mathematical equations for the thermodynamics and kinetics of hydrogen absorption by Zr0.8Ti0.2Co. In order to obtain the thermodynamic and kinetic data quickly, a constant-flow hydrogen absorption test was used in this study. The thermodynamic performance test revealed that the Zr0.8Ti0.2Co hydrogen absorption transition process was switched from ZrCo to ZrCoHx (metastable phase) and then to ZrCoH3 with an enthalpy of hydrogenation (ΔH) of 66.59 kJ·mol−1 H2, which was obviously lower than that of the ZrCo-based alloy due to the metastable phase.
A mathematical model of the hydrogen absorption coupled with the kinetic equations was established by kinetic process analysis. The hydrogen absorption process was divided into two stages, and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model could fit the two stages of the Zr0.8Ti0.2Co hydrogen absorption well. In the first stage, the JMAK index was n1 = 1.04, activation energy Ea1 = 7594.6 J/mol, and rate coefficient of reaction k01 = 1.958E-4 s−1. While in the second stage, it was n2 = 1.39, Ea2 = 5221 J/mol, and k02 = 9.938E-5 s−1. Based on the range of n values, it can be inferred that both the nucleation and growth mechanisms or the diffusion mechanism were expressed as the rate-limiting steps. Combined with the simulation software, metal hydride bed performance could be better investigated and the structural design could be guided by the obtained mathematical equation of Zr0.8Ti0.2Co hydriding.