ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kamran Ahmad, Zahoor Ahmad, Saira Gulfam, Muhammad Taimoor Saleem, Muhammad Bilal, Asad Yaqoob Mian
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 196-204
Research Article | doi.org/10.1080/15361055.2023.2214269
Articles are hosted by Taylor and Francis Online.
The achievement of a high toroidal magnetic field in a small spherical tokamak is challenging because of the small bore area in the central cylinder of the vacuum vessel. In this paper, we present a toroidal field coil of 0.3 T at the center of the MT-II tokamak. It has been designed, developed, and tested for installation at Pakistan Tokamak Plasma Research Institute (PTPRI). The coil is made of highly pure oxygen-free copper. It has a cross-sectional area of 10 × 15 mm2 (150 mm2) for the flow of an approximately 20-kA current to produce a 0.33 T toroidal magnetic field at the center of the tokamak. Mechanical support for the central stack of the inner legs is provided by a twisted grooved nylon cylinder to control the torque and attractive forces. The repulsive force density between the joints of the outer and inner legs is balanced by nuts and bolts along with an insulated ring of Teflon and an isolated metallic clamp from both ends. This compressive force also reduces connection resistance. The simulated currents and magnetic field are confirmed from the experimental results as well.