ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Kamran Ahmad, Zahoor Ahmad, Saira Gulfam, Muhammad Taimoor Saleem, Muhammad Bilal, Asad Yaqoob Mian
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 196-204
Research Article | doi.org/10.1080/15361055.2023.2214269
Articles are hosted by Taylor and Francis Online.
The achievement of a high toroidal magnetic field in a small spherical tokamak is challenging because of the small bore area in the central cylinder of the vacuum vessel. In this paper, we present a toroidal field coil of 0.3 T at the center of the MT-II tokamak. It has been designed, developed, and tested for installation at Pakistan Tokamak Plasma Research Institute (PTPRI). The coil is made of highly pure oxygen-free copper. It has a cross-sectional area of 10 × 15 mm2 (150 mm2) for the flow of an approximately 20-kA current to produce a 0.33 T toroidal magnetic field at the center of the tokamak. Mechanical support for the central stack of the inner legs is provided by a twisted grooved nylon cylinder to control the torque and attractive forces. The repulsive force density between the joints of the outer and inner legs is balanced by nuts and bolts along with an insulated ring of Teflon and an isolated metallic clamp from both ends. This compressive force also reduces connection resistance. The simulated currents and magnetic field are confirmed from the experimental results as well.