ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Vamsi Krishna K, Gopi Krishna C, Ateekh Ur Rehman, Kishore Babu Nagumothu, Mahesh Kumar Talari, Prakash Srirangam
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 166-177
Research Article | doi.org/10.1080/15361055.2023.2211723
Articles are hosted by Taylor and Francis Online.
The current work aims to examine the influence of various welding speeds (500, 700, and 800 mm/min) on the microstructure and mechanical characteristics of electron beam–welded Ti-6Al-4V alloy joints. The base metal microstructure was composed of a slightly elongated α phase and a transformed β phase, whereas the fusion zone (FZ) exhibited an acicular martensitic α′ microstructure. This is due to faster cooling rates in the FZ associated with electron beam welding. The welds prepared with a 800 mm/min welding speed showed higher strength and lower ductility [yield strength (YS): 959 ± 6 MPa, ultimate tensile strength (UTS): 993 ± 5 MPa, percent elongation (%El): 8] compared to those prepared with 500 mm/min (YS: 909 ± 4 MPa, UTS: 956 ± 5 MPa, %El: 11). This was due to a decrease in the width of the α-platelets in the FZ owing to faster cooling rates at higher welding speeds. For all welding speeds, samples that underwent post-weld heat treatment (PWHT) displayed a noteworthy reduction in both UTS and hardness values compared to all the as-welded samples. However, the welds at lower welding speeds showed lower strength and higher ductility (YS: 868 ± 5 MPa, UTS: 922 ± 4 MPa, %El: 13) compared to higher welding speeds (YS: 892 ± 5 MPa, UTS: 938 ± 6 MPa, %El: 9) after PWHT. This is due to the formation of the diffusional product α + β phase in the FZ, as evidenced by the transmission electron microscope results.