ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Yiğit, A. Kara, A. Yilmaz
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 156-165
Research Article | doi.org/10.1080/15361055.2023.2211190
Articles are hosted by Taylor and Francis Online.
Niobium is an important alloying material in nuclear reactors because of its enormous strength, low density, low neutron absorption, and high melting point. This study is structured on nuclear data calculations that are based on a Monte Carlo simulation approach. The GEANT4, SRIM, and TALYS codes were used to create a comprehensive simulation of 3.6-MeV alphas and 14.7-MeV protons on a target. We present calculation results on nuclear parameters as ion energy losses, displacements, vacancies, projected ranges, and cross sections. A comparison between the GEANT4 and SRIM codes was made for the projected ranges and ion energy losses. Besides, the calculations of cross sections in the TALYS code were carried out using level densities on the Skyrme energy density functional and the Fermi gas model.