ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
H. Weisen, P. Blanchard, M. Vallar, A. N. Karpushov, J. Dubray, A. Merle, B. P. Duval, J. Cazabonne, D. Testa, H. Hamac Elaian, the TCV Team, A. Žohar, L. Snoj, B. Kos, M. Fortuna, A. Čufar, F. Tesse, F. Fontana, C. Gloor, R. Iannarelli, H. Palacios, C. Tille, M. Molteni
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 143-155
Research Article | doi.org/10.1080/15361055.2023.2209490
Articles are hosted by Taylor and Francis Online.
The Tokamak à Configuration variable (TCV) is equipped with two neutral beam injection (NBI) systems delivering up to 1.2 MW each for pulse durations of up to 2 s. The first system (NBI1), designed for an injection energy in the range of 25 to 30 keV has been operational since 2016. The existing concrete neutron shielding of the experimental hall proved insufficient for fully protecting human accessible areas, limiting the number of daily plasma pulses using NBI1. The recently commissioned second system (NBI2) is designed for injection synergies in the range 50 to 60 keV. Both systems are tangentially oriented in opposite directions in order to permit experiments with low or no net torque.
Calculations with the TRANSP and ORBIS heating codes show that neutron rates from deuterium-deuterium fusion reactions may be as high as 1014 n/s, up to 10 times higher than with the lower energy beam only. This is due both to the ~five times larger beam-plasma neutron rates from the higher energy beam and to an exceptionally high contribution from beam-beam reactions between the opposing beams. The radiation protection policy at the Swiss Plasma Center is that all staff members be considered as members of the general public, limiting the daily personal dose to 4 µSv. This is also the maximum admissible daily dose in any publicly accessible zone, whether occupied or not.
Currently, with only the lower energy beam, this limit can be attained in the control room adjacent to the device hall after only five NBI pulses out of a possible 30 daily pulses. To allow for exploitation of the two beams at full specifications, the source side of the existing barite concrete walls of the 15 × 20 × 8 m large TCV hall will be covered with 20-cm-thick polythene (PE) cladding and a ceiling made of 35-cm-thick PE will be added. The total mass of PE will be 200 tons. The usage of PE at this scale for neutron shielding is unprecedented at any fusion research facility.