ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Kori D. McDonald, Collin Malone, Josh J. Cooper, Anthony B. Thompson, George K. Larsen
Fusion Science and Technology | Volume 80 | Number 2 | February 2024 | Pages 137-142
Research Article | doi.org/10.1080/15361055.2023.2209048
Articles are hosted by Taylor and Francis Online.
By leveraging the large isotope effect in the palladium hydrogen isotope system, the Thermal Cycling Absorption Process (TCAP) provides an efficient and advantageous means to separate protium, deuterium, and tritium. To meet increased future tritium processing demands, such as those needed for fusion power plants, current designs of the separation columns need to be adapted and optimized using the progress made in understanding hydrogen isotope science. One key to this optimization lies in understanding the baseline performance for currently employed separation packing materials. Pd/k and molecular sieves, as commonly used for the separation of hydrogen isotopes, are herein evaluated to establish a baseline for their separation efficiency. Van Deemter plots are formulated, and the influence of each parameter is evaluated to determine areas for improvement.