ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jochen Max Linke, Takeshi Hirai, Manfred Rödig, Lorenz Anton Singheiser
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 142-151
Technical Paper | Stellarators | doi.org/10.13182/FST04-A550
Articles are hosted by Taylor and Francis Online.
Beside quasi-stationary plasma operation, short transient thermal pulses with deposited energy densities on the order of several tens of MJ/m2 are a serious concern for next-step devices, in particular, for tokamak devices such as ITER. The most serious of these transient events are plasma disruptions. Here, a considerable fraction of the plasma energy is deposited on a localized surface area in the divertor strike zone region. The timescale of these events is typically on the order of 1 ms. In spite of the fact that a dense cloud of ablation vapor will form above the strike zone, only partial shielding of the divertor armor from incident plasma particles will occur. As a consequence, thermal shock-induced crack formation, vaporization, surface melting, melt layer ejection, and particle emission induced by brittle destruction processes will limit the lifetime of the components. In addition, dust particles (neutron-activated metals or tritium-enriched carbon) are a serious concern from a safety point of view.Other transient heat loads that occasionally occur in magnetic confinement experiments such as instabilities in the plasma positioning (vertical displacement events) also may cause irreversible damage to plasma-facing components (PFCs), particularly to metals such as beryllium and tungsten. Other serious damage to PFCs is due to intense fluxes of 14-MeV neutrons in D-T burning plasma devices. Integrated neutron fluence of several tens of displacements per atom in future thermonuclear fusion reactors will degrade essential physical properties of the components (e.g., thermal conductivity). Another serious concern is the embrittlement of the heat sink and the plasma-facing materials (PFMs).To investigate the performance of carbon-based and metallic PFMs under the aforementioned thermal loads, simulation experiments have been performed in highly specialized high-heat-flux test facilities. The neutron-induced degradation of materials and components was investigated on selected test samples that were irradiated in high-flux material test reactors.