ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Jochen Max Linke, Takeshi Hirai, Manfred Rödig, Lorenz Anton Singheiser
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 142-151
Technical Paper | Stellarators | doi.org/10.13182/FST04-A550
Articles are hosted by Taylor and Francis Online.
Beside quasi-stationary plasma operation, short transient thermal pulses with deposited energy densities on the order of several tens of MJ/m2 are a serious concern for next-step devices, in particular, for tokamak devices such as ITER. The most serious of these transient events are plasma disruptions. Here, a considerable fraction of the plasma energy is deposited on a localized surface area in the divertor strike zone region. The timescale of these events is typically on the order of 1 ms. In spite of the fact that a dense cloud of ablation vapor will form above the strike zone, only partial shielding of the divertor armor from incident plasma particles will occur. As a consequence, thermal shock-induced crack formation, vaporization, surface melting, melt layer ejection, and particle emission induced by brittle destruction processes will limit the lifetime of the components. In addition, dust particles (neutron-activated metals or tritium-enriched carbon) are a serious concern from a safety point of view.Other transient heat loads that occasionally occur in magnetic confinement experiments such as instabilities in the plasma positioning (vertical displacement events) also may cause irreversible damage to plasma-facing components (PFCs), particularly to metals such as beryllium and tungsten. Other serious damage to PFCs is due to intense fluxes of 14-MeV neutrons in D-T burning plasma devices. Integrated neutron fluence of several tens of displacements per atom in future thermonuclear fusion reactors will degrade essential physical properties of the components (e.g., thermal conductivity). Another serious concern is the embrittlement of the heat sink and the plasma-facing materials (PFMs).To investigate the performance of carbon-based and metallic PFMs under the aforementioned thermal loads, simulation experiments have been performed in highly specialized high-heat-flux test facilities. The neutron-induced degradation of materials and components was investigated on selected test samples that were irradiated in high-flux material test reactors.