ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Gherardo Stoppini
Fusion Science and Technology | Volume 34 | Number 1 | August 1998 | Pages 81-85
Technical Paper | doi.org/10.13182/FST98-A55
Articles are hosted by Taylor and Francis Online.
Miley et al. and, independently, Mizuno et al. claim to have observed nuclides produced in Ni (Z = 28) when an electrolytic light-water cell is used. Miley et al. use thin layers of Ni (5 × 10-6 cm) and claim that the effect is reproducible. The secondary nuclides are distributed in a wide range of Z and A and show nuclides with Z < 28 and accumulations at Z = 48 and 78. If the nuclides at Z = 48 and 78 are Ni-Ni fusion, they can be produced only when the original Ni nuclei gain sufficient kinetic energy to overcome the Ni-Ni repulsive Coulomb barrier.The foregoing data are discussed in terms of current physics. In particular, it is assumed that the gain of kinetic energy derives from an impulsive increase of absolute nuclear binding energies of Ni due to a high rate of capture of orbital electrons and consequent almost instantaneous multiple p → n transitions. Under this hypothesis, neutrino emission should be detected during nuclear transmutation.