ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Xiyang Zhang, Tiejun Xu, Lei Yin, Nanyu Mou, Yan Wang, Damao Yao
Fusion Science and Technology | Volume 80 | Number 1 | January 2024 | Pages 98-107
Research Article | doi.org/10.1080/15361055.2023.2198482
Articles are hosted by Taylor and Francis Online.
The China Fusion Engineering Test Reactor (CFETR) is a device developed to verify the engineering feasibility of a fusion reactor. For CFETR, the divertor is an important plasma-facing component, whose main function is to exclude impurities and remove plasma heat. In addition, the requirement for remote handling (RH) maintenance must be satisfied because of the level of radioactivity in the vacuum vessel after shutdown. The dome is an important component of the divertor, whose main function is to isolate impurity particles as well as to improve the ability of excluding particles. In the optional dome design, a hybrid divertor-blanket concept, a front-face RH compatible structure in plasma-facing units (PFUs), and a RH maintenance scheme for the main bolt are proposed. The vulnerable targets can be replaced directly and thus reduce the RH maintenance time. The dome needs to withstand the heat flux of 10 MW/m2 and nuclear heat in the condition of 1.5 GW of fusion power in the engineering design requirements. Because of the RH compatible structure, higher requirements are demanded for the design of the dome cooling system. In this study, the cooling system and the customized heat transfer structure of dome PFUs are designed to guarantee the maximum heat removal level. The steady-state thermal analysis shows that the cooling system fulfills the design requirements. The concept of the hybrid divertor-blanket and the front-face RH compatible structure for the divertor target have certain reference significance and value for the engineering design and RH maintenance research for the fusion reactor divertor in the future.