ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K. Vamsi Krishna, Sriharitha Rowthu, Vijay N. Nadakuduru, Ganesh Pilla, N. Kishore Babu
Fusion Science and Technology | Volume 80 | Number 1 | January 2024 | Pages 68-81
Research Article | doi.org/10.1080/15361055.2023.2182119
Articles are hosted by Taylor and Francis Online.
Titanium alloys are extensively used in aerospace applications due to their high strength-to-weight ratio, corrosion resistance, and outstanding mechanical performance. However, welding these alloys is difficult as they are highly reactive to environmental gases (O, N, and H) above 500°C. Aerospace structures require joints of high integrity to meet the design requirements. To this concern, gas tungsten arc welding (GTAW) offers the potential to achieve welds of equal quality to electron beam welding or laser beam welding at much lower capital costs. The present study reports the influence of heat input on the evolution of microstructure and mechanical properties of Ti-15V-3Al-3Cr-3Sn (Ti-1533), a metastable beta titanium alloy welded by GTAW. The heat input can be controlled by different welding parameters like current, voltage, and welding speed. However, welding speed (15, 20, and 25 cm/min) is a crucial welding parameter that influences the cooling rate (product of thermal gradient and growth rate) and heat input. The microstructure of the fusion zone (FZ) consists of coarse columnar β grains, and coarse equiaxed β grains in the heat-affected zone, while the base metal comprises fine equiaxed β grains in all welding speeds. The average width of the FZ was found to decrease with an increase in welding speed due to lower heat input and higher cooling rate. The welds at 25 cm/min welding speed showed higher ultimate tensile strength (UTS) (654 ± 5 MPa) and hardness (240 HV) compared to 15 cm/min welding speed (UTS 593 ± 5 MPa; hardness 230 HV). The higher strength in the as-welded sample at 25 cm/min welding speed can be attributed to the lower columnar width of the β grains and the formation of equiaxed grains at the bottom portion of the weld zone. A similar trend was observed in samples subjected to the postweld heat treatment for all the weld speeds. Postweld aging of the welds prepared at 25 cm/min speed showed uniform α precipitates in the β matrix, as evidenced by transmission electron microscope results.