ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Youshan Yang, Lusheng Wang
Fusion Science and Technology | Volume 80 | Number 1 | January 2024 | Pages 55-67
Research Article | doi.org/10.1080/15361055.2023.2185045
Articles are hosted by Taylor and Francis Online.
This work aims to investigate the characteristics of the H atom in the tetrahedral interstitial sites of 8f2, 4c1, 8f1, 4c2, 8e, and 8g1 in the ZrCoH3 cell by first principles calculation based on the density functional theory. The research shows that pressure can change the local property of the electrons and the bonding ability of the H atom and its adjacent metal atoms, resulting in changes in the stable point and the disproportion point of the H atom in ZrCoH3. Further research has found that at P = 0 GPa, the significant Co-H covalent bond makes the H atom prefer to occupy the tetrahedral interstitial sites of 8f1 and 4c2 in the ZrCoH3 cell, while the H atom occupying the tetrahedral interstitial site of 4c1 in the ZrCoH3 cell has a significant Zr-H ionic bond with its adjacent Zr atom, which is the reason for the disproportionation of the ZrCoH3 alloy. When P = 10 GPa, the H atoms become unstable in the 8f1 and 4c2 tetrahedral interstices of the ZrCoH3 crystal cell. The significant Zr-H ionic bond between the H atoms in the 8f1 tetrahedral interstice and their adjacent Zr atoms is the reason for the disproportionation of the ZrCoH3 alloy, and the significant Co-H covalent bond makes the H atoms preferentially occupy the 4c1 and 8g1 tetrahedral interstices.