ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kieran J. McCarthy, Maria A. Ochando, Francisco Medina, Bernardo Zurro, Carlos Hidalgo, Maria de los Angeles Pedrosa, Ignacio Pastor, Jesús A. Herranz, Alfonso Baciero
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 129-134
Technical Paper | Stellarators | doi.org/10.13182/FST04-A548
Articles are hosted by Taylor and Francis Online.
A fine-grained mobile pyrolytic graphite limiter was biased to generate radial electric fields in the plasma edge region of the TJ-II stellarator to improve confinement operation modes. Indeed, for the range of voltages applied (up to ±300 V), spectroscopic data indicate that limiter biasing does not induce significant external influxes of impurities. Also, after boronization of the vacuum chamber, increases of ~100% in electron density, together with reductions of the order of 40% in Zeff, are observed during limiter biasing. Here, we report on the first study of impurity behavior in the TJ-II during externally induced radial electric fields. For this, different spectroscopic methods were employed, and the results obtained were compared to assess impurity behavior and to evaluate the effectiveness of such biasing on plasma confinement in TJ-II.