ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Jonas C. Schwenzer, Alessia Santucci, Christian Day
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 1208-1218
Research Article | doi.org/10.1080/15361055.2023.2189550
Articles are hosted by Taylor and Francis Online.
The Helium Cooled Pebble Bed breeding blanket of the EU-DEMO foresees continuous processing of a small fraction of the helium coolant in the coolant purification system (CPS) to counteract buildup of tritium and impurities. For this system, two different process variants are currently considered. The first is based on the conversion of all hydrogen species into water using copper oxide beds and the subsequent water adsorption over zeolite molecular sieve (ZMS) beds. The alternative process foresees the direct sorption of hydrogens onto novel ZAO® non-evaporable getter (NEG) materials. The ZMS beds and the NEG beds are operated batchwise, but alternating schemes with an absorption (operation) phase and a desorption (regeneration) phase result in a pseudocontinuous process. Transient process simulations have been developed to evaluate the performance and impact of the different variants on downstream systems in the fuel cycle. In this contribution, these process models for the preconceptual design of both variants are presented and evaluated. For the reference designs proposed for each system, they have been found to satisfy the requirements of achieving 90% efficiency. This modeling then lays the foundation for optimization of the conventional process and outlines further research demand regarding the application of NEG materials needed to progress toward the concept design of the CPS process.