ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
L. R. Baylor, T. E. Gebhart, S. J. Meitner, D. A. Rasmussen, C. Barbier, S. K. Combs, N. Commaux, P. W. Fisher, M. J. Gouge, T. C. Jernigan
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 1082-1091
Research Article | doi.org/10.1080/15361055.2023.2214268
Articles are hosted by Taylor and Francis Online.
The mitigation of plasma disruptions in tokamaks has become a very important topic in magnetic fusion research, motived by the potential challenges that may occur in ITER disruptions due to the high magnetic field and high plasma current. Such disruptions can have a deleterious effect on the internal components due to the fast dissipation of the plasma thermal energy and the magnetic stored energy leading to large forces, as well as the possible formation of several megaamperes of energetic runaway electrons during the current quench. Oak Ridge National Laboratory has been developing and deploying technology to inject material into the plasma to rapidly radiate the thermal energy and start a fast plasma current ramp down to dissipate the magnetic stored energy. The choice of materials to inject and the injection technology have evolved over the past decades to arrive at the present systems planned for ITER based on cryogenic pellets of hydrogen-neon mixtures for thermal mitigation and hydrogen pellets for runaway electron mitigation. This scheme injects shattered cryogenic material into the plasma from pellets formed in situ in a pipe gun and fired onto angled metal surfaces at the end of the injection line just before entering the plasma.
In this paper, we describe the evolution of schemes and technologies that have been employed for disruption mitigation and runaway electron prevention and dissipation, discuss how they have performed in present-day experiments, and give the outlook for the use of this technology in a burning plasma and how it may continue to evolve in the future.