ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
S. J. Meitner, L. R. Baylor
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 1065-1070
Research Article | doi.org/10.1080/15361055.2023.2174335
Articles are hosted by Taylor and Francis Online.
A continuous pellet fueling system (CPFS) for use on the Wendelstein 7-X (W7-X) stellarator has been fabricated and assembled with commissioning tests completed at the Oak Ridge National Laboratory (ORNL). Continuous fueling is accomplished by cutting pellets from the cross section of a continuous solid extrusion produced by a twin-screw extruder and accelerated by a gas gun cutter mechanism. The pellets travel through a series of straight guide tubes before entering the stellarator through a curved guide tube. The CPFS has an array of diagnostics that include the extruder torque, rotation rate, and thrust. A shock and pressure sensor provide verification of proper pellet cutting and acceleration. Two ORNL-developed microwave cavity diagnostics within the injection line guide tubes provide pellet speed and relative mass measurements. For commissioning, a high-speed camera has been positioned at the base of the extruder to verify extrusion speed and quality as well as the pellet cutting process, and a third microwave cavity has been mounted after the curved guide tube to verify pellet quality and size. Maximum injection rate, pellet speed, barrel and guide tube induced erosion, and pellet survivability data have been recorded. This paper presents the laboratory experimental setup and results of these commissioning tests.