ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Thomas R. Barrett, M. Bamford, N. Bowden, B. Chuilon, T. Deighan, P. Efthymiou, M. Gorley, T. Grant, D. Horsley, M. Kovari, M. Tindall
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 1039-1050
Research Article | doi.org/10.1080/15361055.2022.2147766
Articles are hosted by Taylor and Francis Online.
The Combined Heating and Magnetic Research Apparatus (CHIMERA) fusion technology test facility is under construction. The facility will be uniquely capable of semi-integral testing of fusion materials and component modules up to the size of the ITER test blanket module box, under combined conditions of in-vacuum high heat flux, static and pulsed magnetic fields, and high-temperature/high-pressure water cooling. This paper reports the high-level capabilities of the CHIMERA baselined design and the planned program of testing and describes the proposed strategy for use of simulations for virtual testing, qualification, and in-situ monitoring.
The first step in testing of a component mock-up is to take data from as-built geometry and other measurements and transmit them to an integrated computational model that can closely mimic the physical asset and form a digital replica. Not only can this digital replica be queried in advance of physical testing in the facility, allowing optimization of the test program, but combined with subsequent test data, it also can deliver much greater insight into experimental results than can be obtained using test data alone. The digital replica is used as the basis for a digital twin, which is live coupled to the running experiment, and is under development as a proposed key facet of fusion reactor surveillance in-service. Physical mock-ups for testing can be subjected to in-vacuum heat flux up to 0.5 MW/m2 over the entire surface while within a strong horizontal magnetic field. The central field can be up to 4 T with a peak in the test region of 5 T. The same component mock-ups can also be subjected to repeated magnetic field pulses with ramp rate 12 T/s, which can simulate loading conditions of a plasma disruption. Facility upgrades are underway to include a liquid metal circulation loop to allow the study of magnetohydrodynamics effects and to add a high-heat-flux system using a very high-power continuous-wave laser to achieve divertor-relevant heat fluxes of 20 MW/m2 over the area of a small-scale mock-up. Four examples are given to illustrate the physical testing program that is currently foreseen.