ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Thomas R. Barrett, M. Bamford, N. Bowden, B. Chuilon, T. Deighan, P. Efthymiou, M. Gorley, T. Grant, D. Horsley, M. Kovari, M. Tindall
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 1039-1050
Research Article | doi.org/10.1080/15361055.2022.2147766
Articles are hosted by Taylor and Francis Online.
The Combined Heating and Magnetic Research Apparatus (CHIMERA) fusion technology test facility is under construction. The facility will be uniquely capable of semi-integral testing of fusion materials and component modules up to the size of the ITER test blanket module box, under combined conditions of in-vacuum high heat flux, static and pulsed magnetic fields, and high-temperature/high-pressure water cooling. This paper reports the high-level capabilities of the CHIMERA baselined design and the planned program of testing and describes the proposed strategy for use of simulations for virtual testing, qualification, and in-situ monitoring.
The first step in testing of a component mock-up is to take data from as-built geometry and other measurements and transmit them to an integrated computational model that can closely mimic the physical asset and form a digital replica. Not only can this digital replica be queried in advance of physical testing in the facility, allowing optimization of the test program, but combined with subsequent test data, it also can deliver much greater insight into experimental results than can be obtained using test data alone. The digital replica is used as the basis for a digital twin, which is live coupled to the running experiment, and is under development as a proposed key facet of fusion reactor surveillance in-service. Physical mock-ups for testing can be subjected to in-vacuum heat flux up to 0.5 MW/m2 over the entire surface while within a strong horizontal magnetic field. The central field can be up to 4 T with a peak in the test region of 5 T. The same component mock-ups can also be subjected to repeated magnetic field pulses with ramp rate 12 T/s, which can simulate loading conditions of a plasma disruption. Facility upgrades are underway to include a liquid metal circulation loop to allow the study of magnetohydrodynamics effects and to add a high-heat-flux system using a very high-power continuous-wave laser to achieve divertor-relevant heat fluxes of 20 MW/m2 over the area of a small-scale mock-up. Four examples are given to illustrate the physical testing program that is currently foreseen.