ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Tim D. Bohm, Ben A. Lindley
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 995-1007
Research Article | doi.org/10.1080/15361055.2022.2136923
Articles are hosted by Taylor and Francis Online.
Tritium breeding blankets within D-T-fueled fusion reactors contain lithium compounds and typically require neutron multiplier materials to achieve a tritium breeding ratio (TBR) consistent with self-sustaining operation. Liquid breeder blankets have some advantages over solid blankets, and previous blanket studies have investigated liquid metal as well as liquid salt–based blankets. Liquid salts have reduced magnetohydrodynamic effects as compared to liquid metals, but typically have a lower TBR. Recently, advanced fission reactor concepts have considered chloride-based salts in their design, and there is a significant amount of research work occurring to study these salts. Chloride salts have previously been considered for fusion reactors, but studies have typically found lower breeding ratios than for fluoride salts, such as 2(LiF)-BeF2 (flibe) so they have not been further developed. In this work, we use a one-dimensional cylindrical radiation transport model of a conceptual tokamak fusion reactor to investigate the neutronics feasibility of using a chloride salt–based blanket that uses chlorine enriched in 37Cl, which has both a low capture cross section and a substantial (n,2n) cross section. It is found that chloride salts (LiCl mixed with BeCl2 and/or PbCl2) can potentially achieve a ~3% to 5% higher TBR than fluoride molten salts, notably flibe, in the absence of a solid multiplier. Including a solid multiplier, however, does narrow this advantage, with TBRs estimated within ~1% of flibe with a 2-cm Be multiplier. Chloride salts can also reach lower melting points than flibe, potentially improving the scope for the use of reduced activation ferritic-martensitic steel as a structural material. There is substantial uncertainty in the calculations driven by limited thermochemical data for the Cl salts, plus cross-section uncertainties. The production of 36Cl through 35Cl(n,g) and 37Cl(n,2n) has the potential to challenge the waste disposal rating of the blanket. Calculations indicate that, while this is not an immediate showstopper, this case depends upon the exact waste disposal rating criteria used for 36Cl. Further work could reduce these uncertainties with improved thermochemical data, higher-fidelity modeling for downselected salts, and more refined waste disposal calculations and regulatory guidance. Finally, it must be recognized that, as for all molten salts, corrosion and chemistry can present appreciable technical challenges that require further assessment in developing a practical blanket concept, and also that the enrichment of chlorine presents an additional technical and supply chain challenge.