ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Marina Rizk, Felipe S. Novais, Nicholas R. Brown, G. Ivan Maldonado
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 989-994
Research Article | doi.org/10.1080/15361055.2022.2140580
Articles are hosted by Taylor and Francis Online.
The Fusion Energy System Studies Fusion Nuclear Science Facility (FESS-FNSF) concept represents a transitional step between ITER and a commercial fusion power plant. The FNSF is a conceptualized D-T fueled tokamak with 518 MW of fusion power that has been extensively used to explore and optimize design features. The energetic 14.1-MeV neutrons can produce significant localized heating and activations, and can cause damage to plasma-facing components, which can determine maintenance/outage scheduling needs and also impact the lifetime of the device as a whole. This study illustrates a neutronics analysis that was conducted on a 22.5-degree symmetric sector of the FNSF with the goal of understanding the neutron heating and radiation damage that can be characterized by quantifying the displacements per atom (dpa).
Concurrently, this study also focused on the development of analysis capabilities by converting a three-dimensional computer-aided design model of the FNSF into MCNP6.2 input using the McCad code. Accordingly, some confirmatory results on tritium production and the tritium breeding ratio (TBR) are provided to support model validation. The results produced by MCNP6.2 simulations showed that the highest heating and damage occurred in the outboard region, which concentrated approximately 290 MW of the total nuclear heating, in contrast to 97 MW within the inboard region. These results are consistent with previous studies that employed earlier versions of the FNSF concept and different modeling approaches.
This study also provides additional details on neutron wall loading, as well as total heating from neutrons and gammas, results which show the total heating of the device (16 sectors) is approximately 477.83 ± 0.80% MW, indicating a neutron energy multiplication factor of 1.15. Additionally, the capability to calculate hydrogen and helium production, as well as dpa, is illustrated. Finally, the neutronics effects of using alternative materials to tungsten carbide were evaluated for the vacuum vessel, low-temperature shield, and structural ring components, which showed that compounds like YH2, Mg(BH4)2, and ZrH2 could reduce the total heating on the magnet and also reduce the TBR.