ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Laila El-Guebaly
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 919-931
Research Article | doi.org/10.1080/15361055.2022.2151820
Articles are hosted by Taylor and Francis Online.
In recent decades, fusion designers have become increasingly aware of the large amount of mildly radioactive materials that fusion generates in comparison to their fission counterpart, which is a problem that was overlooked in early fusion studies. This radioactive waste (radwaste) problem could influence public acceptability of fusion and will certainly become a significant issue in the immediate future as fusion moves forward toward commercialization. There is a growing appreciation to revisit the 1960s decision that relegated all radwaste to the back end as only a disposal issue. In light of the challenges facing fusion in the 21st century, a thoughtful alternate approach that promotes recycling and clearance of all fusion radioactive materials is considered to stress the environmental value of fusion in utilizing natural assets efficiently, assert the fundamental premise of fusion as a nuclear energy source with minimal environmental impact, and gain public acceptability for fusion. This strategy helps to reach the common goal of several organizations that recommend recycling and clearing as much radioactive material as practically possible to reduce final radwaste burdens/risks and to maximize the use of natural resources. Recognizing the relatively early stages of commercial fusion maturity, lessons learned and worldwide industrial experiences from other nuclear fields are valuable resources for the fusion recycling/clearance approach. To make such an approach a reality, the global fusion program should be set up to accommodate the new strategy at an early stage of fusion designs and address the identified issues and needs with directed research and development programs. The absence of official fusion regulatory guidelines has been recognized for several decades, but some progress has been made in recent years, recognizing that fusion is different from fission and has a different radionuclide profile.