ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Laila El-Guebaly
Fusion Science and Technology | Volume 79 | Number 8 | November 2023 | Pages 919-931
Research Article | doi.org/10.1080/15361055.2022.2151820
Articles are hosted by Taylor and Francis Online.
In recent decades, fusion designers have become increasingly aware of the large amount of mildly radioactive materials that fusion generates in comparison to their fission counterpart, which is a problem that was overlooked in early fusion studies. This radioactive waste (radwaste) problem could influence public acceptability of fusion and will certainly become a significant issue in the immediate future as fusion moves forward toward commercialization. There is a growing appreciation to revisit the 1960s decision that relegated all radwaste to the back end as only a disposal issue. In light of the challenges facing fusion in the 21st century, a thoughtful alternate approach that promotes recycling and clearance of all fusion radioactive materials is considered to stress the environmental value of fusion in utilizing natural assets efficiently, assert the fundamental premise of fusion as a nuclear energy source with minimal environmental impact, and gain public acceptability for fusion. This strategy helps to reach the common goal of several organizations that recommend recycling and clearing as much radioactive material as practically possible to reduce final radwaste burdens/risks and to maximize the use of natural resources. Recognizing the relatively early stages of commercial fusion maturity, lessons learned and worldwide industrial experiences from other nuclear fields are valuable resources for the fusion recycling/clearance approach. To make such an approach a reality, the global fusion program should be set up to accommodate the new strategy at an early stage of fusion designs and address the identified issues and needs with directed research and development programs. The absence of official fusion regulatory guidelines has been recognized for several decades, but some progress has been made in recent years, recognizing that fusion is different from fission and has a different radionuclide profile.