ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Yuri Igitkhanov, Gerald Kent McCormick, Peter Eckhard Grigull
Fusion Science and Technology | Volume 46 | Number 1 | July 2004 | Pages 101-105
Technical Paper | Stellarators | doi.org/10.13182/FST04-A545
Articles are hosted by Taylor and Francis Online.
A plausible physical explanation of a new advanced high-density H (HDH)-mode operational regime on the W7-AS stellarator is discussed. The HDH regime can be achieved only under a high rate of particle fueling during the starting phase of the discharge. It can be shown that at high enough fueling rates, the density profile grows at the source position, because the relatively weaker diffusivity hinders redistribution of the plasma. This leads to formation of a density gradient at the edge and brings about the radial electric field, which suppresses the plasma turbulence [the edge transport barrier (ETB) formation]. The appearance of the ETB depends on the initial condition, i.e., on the fueling rate, but a steady-state operation depends on the average density value. This critical value can be assessed from the energy and particle balance at the edge, where the transport coefficients depend on the plasma parameters in such a way that bifurcation can occur. The bifurcation occurs between two stable solutions, which are characterized by different values of the particle flux and energy confinement time, reminiscent of the normal confinement and HDH stages. The scaling analysis shows that the threshold average density required for transition increases weakly with power and inverse aspect ratio.