ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Vincent A. Garcia, Justin A. Porto, Patrick M. Donovan
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 914-918
Research Article | doi.org/10.1080/15361055.2023.2192843
Articles are hosted by Taylor and Francis Online.
Recent experiments conducted on hazardous materials using the Precision High Energy-density Liner Implosion eXperiment (PHELIX) required development of a new containment system for the apparatus. Unlike many containment systems, the PHELIX containment system includes a cylindrical imploding aluminum liner, which is driven via magnetic fields to approximate velocities of 1.4 km/s before impacting a target. The complex design attributes and monolithic geometry of the liner have been driven by both simulations and empirical measurements. The contents of this paper cover the design considerations and requirements for the liner, the efforts made in fabricating the component, and steps taken to verify performance both as the dynamic driver of the experiment and as a containment system component.