ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Brian M. Patterson, Steven G. Young, Tana Morrow, Thomas Day, Derek Schmidt, Nikolaus L. Cordes
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 895-906
Research Article | doi.org/10.1080/15361055.2023.2185030
Articles are hosted by Taylor and Francis Online.
X-ray computed tomography (CT) is widely used in material science to understand the inner morphology of a specimen. Often, it is used to qualitatively understand the distribution of salient features such as cracks, voids, or particles. There are many challenges in using X-ray CT in a quantitative manner. These include a coarser resolution for comparable fields of view when compared to other imaging techniques (i.e., electron or optical microscopy), imaging artifacts (i.e., beam hardening and phase contrast), and the plethora of imaging and processing parameters that are chosen by the instrument/software user that can significantly affect the resultant measures. These limitations must be considered and quantified to acquire accurate and precise measurements. X-ray CT is powerful in that it can measure, in three dimensions, salient features that are subsurface and cannot be imaged with other direct line-of-sight imaging techniques. In this work, we discuss the use of X-ray CT to measure the thickness variations of thin walls of opacity capsules as well as the measurement of double-shell targets to understand the concentricity of the capsules within each other. Morphological measurements needed for target characterization require very high accuracy and precision. This paper will describe the application for the first time of a variety of measurements and will explore their robustness and pros and cons to identify areas of research to improve their accuracy and precision.