ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. G. DeVincenzi, A. Nikroo, B. Kozioziemski, J. Hackbarth, T. Braun, I. Chavez, E. Piceno
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 884-894
Research Article | doi.org/10.1080/15361055.2023.2175600
Articles are hosted by Taylor and Francis Online.
Recent deuterium-tritium (D-T)–layered implosion experiments at the National Ignition Facility have achieved a burning plasma and >1-MJ neutron yield. A series of repeat experiments have shown that the degree of performance is very likely dependent on capsule quality, including the quantity of what are collectively termed “high- Z particles.” These particles are detected on a custom-built radiography system, known as the Sagometer, during the final target qualification process. The term particles is misleading, as the source of these nonuniformities in the capsule images is uncertain; the term detection will be used instead. An increased number of D-T targets have been rejected at the final stages of production due to Sagometer detections.
Late detections are deleterious in terms of loss of production parts, effort, and overall operating efficiency. In response, we undertook an effort to determine the origin of these detections and to ultimately mitigate target losses caused by them. Through careful testing and analysis, we have determined neither insufficient production cleanliness nor hohlraum shedding is responsible for the detections on the capsule. We determined that the detections are inherent to the capsule and have made efforts to use the Zeiss Xradia to identify them earlier in the production process. While testing revealed the Xradia is not currently sufficient for identifying such particles using radiography images, we continue to look to other forms of metrology to down select the capsules early in the process.