ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
K. Dale, N. Vargas, A. Jara, E. Marin, G. Lovelace, N. Langley, J. Williams, T. Reuter, C. Kong, C. Monton, N. Alexander, M. Farrell, W. Sweet
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 870-878
Research Article | doi.org/10.1080/15361055.2023.2169547
Articles are hosted by Taylor and Francis Online.
Boron-doped nanowires have promising applications in inertial confinement fusion. Developing an effective fabrication method for boron-doped nanowires is necessary for further investigation into their use as targets. In this paper, we examine a fabrication method that maximizes wire length and boron composition while minimizing fabrication time. Two boron-containing nanoparticles—pure boron and boron nitride nanoparticles—were used as dopants for two possible wire materials: General Atomics–Carbon-Hydrogen (GA-CH) aerogel and carbon-hydrogen (CH) polymer. Anodic aluminum oxide (AAO) templates were used to imprint the materials with nanowires. This study used a five-step fabrication process: (1) synthesis of boron or boron nitride–doped CH material (polymer and aerogel), (2) heat pressing of the doped material into the AAO template, (3) etching away the AAO template, (4) solvent exchanging, and (5) drying. Various boron compositions (in atomic percent), heat pressing temperatures, and heat pressing injection depths were tested to determine the best conditions for wire fabrication. Data collected using scanning electron microscopy and energy dispersive spectroscopy mapping demonstrated that the most successful wires were the boron nitride–doped CH polymer nanowires (7.33 at. % boron) at an injection depth of 0.3960 mm. However, the aerogel material has a greater ability than polymer to disperse the boron nitride nanoparticles, making it more ideal for nanowires. Although the boron nitride–doped aerogel nanowires were unsuccessful, the findings of this study provide promising guidance for future aerogel nanowire fabrication.