ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sung Ho Kim, Swanee J. Shin, Suhas D. Bhandarkar, Theodore F. Baumann
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 853-861
Research Article | doi.org/10.1080/15361055.2023.2173514
Articles are hosted by Taylor and Francis Online.
Uniform, macroscopic monoliths (ranging from a few millimeters to a centimeter) of low-density gold foams with ~95% porosity and ~10-μm-diameter pores were prepared by the casting of gold-coated polystyrene core-shell particles followed by the thermal removal of the polymer core. The Au foams were composed of unique hollow gold spheres and showed superior mechanical integrity and resilience compared to the foams we previously reported. Highly efficient seeding and electroless gold-plating methods in this study caused a significant morphological transition in the gold coatings from coarse particles to fine particles, and finally, to a continuous layer. A modified, scalable casting approach to form large uniform monoliths (up to ~1-cm diameter) and a gentle baking condition to minimize undesirable densification of the final foams enabled us to develop a simple, efficient synthetic route to nanostructured macroscopic low-density gold foams. To demonstrate the improved mechanical stability and machinability, a representative monolithic Au foam (~0.9 g/cm3) was carefully cut into the hollow cylinder of gold foams by a series of machining and processing steps. Finally, we tried to understand the unique mechanical behaviors and properties of this gold foam by nanoindentation measurement.