ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Sung Ho Kim, Swanee J. Shin, Suhas D. Bhandarkar, Theodore F. Baumann
Fusion Science and Technology | Volume 79 | Number 7 | October 2023 | Pages 853-861
Research Article | doi.org/10.1080/15361055.2023.2173514
Articles are hosted by Taylor and Francis Online.
Uniform, macroscopic monoliths (ranging from a few millimeters to a centimeter) of low-density gold foams with ~95% porosity and ~10-μm-diameter pores were prepared by the casting of gold-coated polystyrene core-shell particles followed by the thermal removal of the polymer core. The Au foams were composed of unique hollow gold spheres and showed superior mechanical integrity and resilience compared to the foams we previously reported. Highly efficient seeding and electroless gold-plating methods in this study caused a significant morphological transition in the gold coatings from coarse particles to fine particles, and finally, to a continuous layer. A modified, scalable casting approach to form large uniform monoliths (up to ~1-cm diameter) and a gentle baking condition to minimize undesirable densification of the final foams enabled us to develop a simple, efficient synthetic route to nanostructured macroscopic low-density gold foams. To demonstrate the improved mechanical stability and machinability, a representative monolithic Au foam (~0.9 g/cm3) was carefully cut into the hollow cylinder of gold foams by a series of machining and processing steps. Finally, we tried to understand the unique mechanical behaviors and properties of this gold foam by nanoindentation measurement.