ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Theron Marshall, Robert Pawelko, Robert A. Anderl, Galen R. Smolik, Richard L. Moore, Brad Merrill
Fusion Science and Technology | Volume 45 | Number 4 | June 2004 | Pages 592-596
Technical Paper | doi.org/10.13182/FST04-A534
Articles are hosted by Taylor and Francis Online.
Carbon fiber composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber because of carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and readily absorbs tritium. Accordingly, it is believed that during a loss-of-vacuum accident (LOVA), the CFC armor will react with the air ingress and release its absorbed tritium. The mobilization of this tritium and the carbon monoxide produced by the CFC-air chemical reaction are both safety concerns. This paper discusses the MELCOR thermal-hydraulic analysis of a simulated LOVA for the SOMBRERO fusion design. The MELCOR analysis is important because it included data from recent oxidation experiments that studied the advanced CFC NB31. A previous MELCOR analysis of a simulated SOMBRERO LOVA event suggested that the ingress of air would aggressively oxidize the CFC. While the current analysis revealed initial first-wall temperatures that exceed those of the prior analyses, the trend reversed 10 h after the onset of the LOVA. The calculated wall temperatures at the back of the blanket for the current analysis were consistently lower than those previously calculated using the older data. Accordingly, the conclusion is that a LOVA event for a fusion design similar to SOMBRERO may not be as grave as once predicted.