ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Gerald E. Youngblood, David J. Senor, Russell H. Jones
Fusion Science and Technology | Volume 45 | Number 4 | June 2004 | Pages 583-591
Technical Paper | doi.org/10.13182/FST04-A533
Articles are hosted by Taylor and Francis Online.
The hierarchical two-layer (H2L) model describes the effective transverse thermal conductivity (keff) of a two-dimensional (2-D) SiCf /SiC composite plate made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the effects of fiber-matrix interfacial conductance, high-fiber packing fractions within individual tows, and the nonuniform nature of 2-D fabric/matrix layers that usually include a significant amount of interlayer porosity. Previously, H2L model keff predictions were compared to measured values for two versions of 2-D Hi-NicalonTM/pyrocarbon (PyC)/isothermal chemical vapor infiltration (ICVI)-SiC composite, one with a "thin" (0.11-m) and the other with a "thick" (1.04-m) PyC fiber coating, and for a 2-D TyrannoTM SA/thin PyC/forced flow chemical vapor infiltration SiC composite. In this study, H2L model keff predictions were compared to measured values for a 2-D SiCf /SiC composite made using the ICVI process with Hi-Nicalon type S fabric and a thin PyC fiber coating. The values of keff determined for the latter composite were significantly greater than the keff values determined for the composites made with either the Hi-Nicalon or the Tyranno SA fabrics. Differences in keff values were expected for the different fiber types, but major differences also were due to observed microstructural and architectural variations between the composite systems, and as predicted by the H2L model.