ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Chongyang He, Cong Wang, Yong Liu, Lei Chen, Kun Zhang, Fujun Gou, Songlin Liu
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 723-733
Research Article | doi.org/10.1080/15361055.2023.2181045
Articles are hosted by Taylor and Francis Online.
The lithium titanate (Li2TiO3) ceramic pebble bed is one of the main tritium breeder candidates in the solid blankets of fusion reactors. Under the extreme operating conditions of fusion blankets, such as neutron irradiation, high temperatures, structural material extrusion, and stress concentration, the mechanical characteristics of tritium breeding pebble beds not only affect the mechanical performance of the blanket but also affect tritium production and extraction. Therefore, an experimental apparatus was built to characterize the mechanical behavior of 0.47 and 0.99 mm Li2TiO3 pebble beds. A uniaxial compression test was performed under the cyclic mechanical loads of 4, 6, and 8 MPa, respectively. It was shown that large irreversible residual strain appeared in the Li2TiO3 pebble bed with the increase of loading cycles and that the mechanical characteristics of the pebble beds were greatly affected by different mechanical loads and particle sizes. The current results provide relevant experimental data that can support the design of fusion blankets.