ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Chongyang He, Cong Wang, Yong Liu, Lei Chen, Kun Zhang, Fujun Gou, Songlin Liu
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 723-733
Research Article | doi.org/10.1080/15361055.2023.2181045
Articles are hosted by Taylor and Francis Online.
The lithium titanate (Li2TiO3) ceramic pebble bed is one of the main tritium breeder candidates in the solid blankets of fusion reactors. Under the extreme operating conditions of fusion blankets, such as neutron irradiation, high temperatures, structural material extrusion, and stress concentration, the mechanical characteristics of tritium breeding pebble beds not only affect the mechanical performance of the blanket but also affect tritium production and extraction. Therefore, an experimental apparatus was built to characterize the mechanical behavior of 0.47 and 0.99 mm Li2TiO3 pebble beds. A uniaxial compression test was performed under the cyclic mechanical loads of 4, 6, and 8 MPa, respectively. It was shown that large irreversible residual strain appeared in the Li2TiO3 pebble bed with the increase of loading cycles and that the mechanical characteristics of the pebble beds were greatly affected by different mechanical loads and particle sizes. The current results provide relevant experimental data that can support the design of fusion blankets.