ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. V. Zhirkin, V. P. Budaev, A. V. Dedov, A. A. Glebova, A. O. Goltsev, A. T. Komov, B. V. Kuteev
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 703-722
Research Article | doi.org/10.1080/15361055.2023.2178869
Articles are hosted by Taylor and Francis Online.
The modern challenges of nuclear energy are the replenishment of dwindling reserves of nuclear fuel and the development of a closed nuclear fuel cycle while complying with strict radiation safety requirements. A fusion neutron source has unique capabilities to solve these problems. The preliminary results of a neutronic analysis of the FNS-C fusion-fission hybrid neutron source with a thorium-uranium aqueous blanket by the Monte Carlo method computer simulation, using the MCNP-4 code with the ENDF/B-VII cross-section library, gives satisfactory results for the study of the possibility of creating a compact source of fusion neutrons based on a small spherical tokamak for commercial use.
The obtained results show that the FNS-C hybrid blanket generates enough tritium to fully ensure the uninterrupted operation of the FNS-C throughout the year. The reproduction coefficient of 233U is 1.027 at a consumption of 1304 kg/year of the fissile material in the aqueous blanket containing 232Th enriched to 1.47% 233U. The FNS-C is operated with an effective neutron multiplication factor keff ~ 0.99 with reactivity ρ = –0.006249 in the presence of delayed neutrons, which corresponds to the safest state of the core of thermal neutron fission reactors. The thermal power of the FNS-C at keff ~ 0.99 is ~3 GW, which is comparable to the thermal power of fission reactors. This indicates the potential possibility of creating a safe thorium-uranium breeder power reactor based on a fusion neutron source. The results of the study were obtained for the simplified approximate geometrical FNS-C model. To confirm the preliminary results, it is necessary to develop a more accurate calculation model of the FNS-C machine.