ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Hemang S. Agravat, Samiran S. Mukherjee, Vishal Gupta, Paresh Panchal, Pratik Nayak, Jyoti Shankar Mishra, Ranjana Gangradey
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 683-702
Research Article | doi.org/10.1080/15361055.2023.2178252
Articles are hosted by Taylor and Francis Online.
To create high and ultra-high vacuum environments in large-size chambers for applications in space research, nuclear fusion, accelerators, etc., vacuum pumps with fast pumping speeds are essentially required. To cater to this need, one promising solution is the cryopump, which offers efficiency, a low cost, and applicability. The Institute for Plasma Research is working to develop large-size cryopumps and to develop performance testing and design validation for such cryopumps.
In this paper, the Large Cryopumping Test Facility (LCTF) is conceptualized. It houses a large cryopump designed to achieve the pumping speed of ~50 000 L/s for nitrogen gas. The LCTF includes a dome chamber to make the pumping speed measurements per the American Vacuum Society standard and a hybrid cryopump with a 1250-mm opening diameter. The present work illustrates the configuration of the cryopump and its subsystems. The pump will be cooled by liquid nitrogen (LN2) to an 80-K temperature and a Gifford-McMahon cryocooler for up to a 10-K temperature. Here, a new geometrical concept for the pump is considered where the annulus LN2 bath cools the array panels and baffles and also acts as a radiation shield to protect the 10-K cryopanels from radiation heat load. A detailed investigation of the thermal and structural analysis for the LCTF is discussed to validate the performance of the pump and the robustness of the system.