ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Darpan Bhattacharjee, Smruti Ranjan Mohanty, Sayan Adhikari
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 671-682
Research Article | doi.org/10.1080/15361055.2023.2176690
Articles are hosted by Taylor and Francis Online.
The conventional inertial electrostatic confinement fusion (IECF) operation is based on the application of high negative voltage to the central grid, which results in the production of neutrons due to the fusion of lighter ions. The device can also be used as an X-ray source by altering the polarity of the central grid. In this work, electron dynamics during the positive polarity of the central grid are studied using the object-oriented particle-in-cell code XOOPIC. The simulated trapped electron density inside the anode is found to be on the order of 1016 m when 10 kV is applied to the anode. The recirculatory characteristics of the electrons are also studied from the velocity distribution function. A scintillator-based photomultiplier tube is used to detect the produced X-ray. The X-ray-emitting zones of the device are investigated by pinhole imaging techniques. Last, the radiography of metallic as well as biological samples are reported in the later part of this paper. This study shows the utilization of the IECF device when the polarity of the central grid is reversed.