ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
L. M. Garrison, Y. Katoh, T. Hinoki, N. Hashimoto, J. R. Echols, J. W. Geringer, N. C. Reid, J. P. Allain, B. Cheng, D. Dorow-Gerspach, V. Ganesh, H. Gietl, S. A. Humphry-Baker, E. Lang, I. McCue, J. Riesch, L. L. Snead, G. D. W. Smith, J. R. Trelewicz, Y. Yang, S. J. Zinkle
Fusion Science and Technology | Volume 79 | Number 6 | August 2023 | Pages 662-670
Research Article | doi.org/10.1080/15361055.2023.2176687
Articles are hosted by Taylor and Francis Online.
The plasma-facing components (PFCs) of future fusion reactors will have intricate structures and require multiple materials because no one material can simultaneously satisfy all the requirements of the component. The dissimilar material joints in PFCs must withstand extreme thermal and stress gradients under neutron irradiation. The Fusion Research Oriented to Neutron Irradiation and Tritium Behavior at Material Interfaces (FRONTIER) U.S.-Japan collaboration seeks to explore and explain the behavior of internal solid interfaces in PFCs under neutron irradiation. The first step of the collaboration was to identify the leading PFCs that should be studied further and prepare them for the next step, which will include neutron irradiation. Different strategies for material development are being pursued worldwide to produce robust PFCs. Here, an overview is presented of some of the most promising materials in the areas of copper alloys, tungsten-copper composites, tungsten-steel composites, additively manufactured tungsten, particle-reinforced tungsten, and tungsten and SiC fiber composites. Each material’s fabrication and benefits are described, and some discussion of remaining questions is given.